
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

293

SOLUTIONS FOR IMPLEMENTING THE N-BODY SIMULATION ON

THE PASCAL COMPUTE UNIFIED DEVICE ARCHITECTURE

Dana-Mihaela Petroşanu 1*

Alexandru Pîrjan 2

ABSTRACT

In this paper, we develop and propose novel solutions for implementing the N-body

simulation on the latest Pascal parallel processing Compute Unified Device Architecture

(CUDA) as to attain a high level of performance and efficiency. The innovative aspect of

our research emerges from the development and implementation of the N-body simulation

on the latest Pascal Compute Unified Device Architecture, making use of the latest

features of the CUDA Toolkit 8.0, employing the architecture’s dynamic parallelism

feature in order to effectively manage the unbalancing of the processing tasks that

appears once the number of corresponding bodies differs throughout the processing

threads.

KEYWORDS: Graphics Processing Unit (GPU), N-Body Simulation, Verlet-Leapfrog

Algorithm, CUDA, Dynamic Parallelism.

1. INTRODUCTION

Within this paper, we have proposed and developed innovative solutions that facilitate the

implementation of the N-body simulation (𝑁 ≥ 2) on the latest Pascal Compute Unified

Device Architecture (CUDA), launched in 2016 by the NVidia company. Of particular

interest when developing the implementation was to attain a high level of performance

and efficiency. An efficient implementation of the N-body simulation has multiple

applications ranging from astrophysical simulation to a variety of computational tasks in

numerous scientific fields such as: fluid mechanics, medicine and computer graphics

applications.

In [1], the authors develop an implementation of the N-body simulation on the GeForce

GTX8800 NVidia Graphics Processing Unit. In [2], the authors depict how GPUs can be

used for N-body simulations, in order to obtain improvements in performance over the

Central Processing Units available in 2006. Thus, on an ATI X1900XTX, they develop an

algorithm for performing the force computations that represent the most part of stellar and

molecular dynamics simulations. In [3], the authors develop an implementation of N-body

simulation on the Intel Knights Landing Central Processing Unit architecture.

1* corresponding author, PhD Lecturer Department of Mathematics-Informatics, University Politehnica of

Bucharest, 313, Splaiul Independentei, district 6, code 060042, Bucharest, Romania, danap@mathem.pub.ro
2 PhD Hab, Associate Professor Faculty of Computer Science for Business Management, Romanian-American

University, 1B, Expozitiei Blvd., district 1, code 012101, Bucharest, Romania, alex@pirjan.com

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

294

Even though more implementations of the N-body simulation exist in the scientific

literature, most of these are confronted with serious limitations originating from the

required huge computational processing power. The novelty of our approach resides in

developing and implementing the N-body simulation on the latest parallel processing

Pascal Compute Unified Device Architecture, benefitting from the most powerful features

of the CUDA Toolkit 8.0, like the dynamic parallelism feature that helps us to solve

efficiently the unbalancing of the processing tasks that appears once the number of

corresponding bodies differs throughout the processing threads.

We have used the dynamic parallelism feature to call an additional kernel function with

the purpose of processing in parallel the last states of the bodies, consequently attaining a

high level of performance and efficiency for the developed solution. Although there are

many works in the literature that implement the N-body simulation, to our best

knowledge, up to this moment none of them have implemented the N-body simulation on

the latest Pascal Compute Unified Device Architecture, making use of the architecture's

dynamic parallelism feature.

2. THE N-BODY SIMULATION IN THE ALL-PAIRS APPROACH

In the following we depict the all-pairs approach of the N-body simulation (𝑁 ≥ 2), a

technique based on the evaluation of all the interactions, considering all the possible pairs

for each of the N considered bodies [4]. Thus, the number of interactions is
𝑁(𝑁−1)

2
. In the

following, we denote the vectors with lowercase bold letters. Thus, for each positive

integer 𝑖, 1 ≤ 𝑖 ≤ 𝑁, we denote by 𝒙𝒊 the initial 3D position and by 𝒗𝒊 the initial velocity

for each of the N bodies, by 𝒇𝒊𝒋 the force vector caused on the 𝑖-body by the gravitational

attraction of the 𝑗-body.

According to the Newton's law of universal gravitation, each of the N bodies attracts

every other body with a force that is directly proportional to the product of their masses

and inversely proportional to the square of the distance between them [5], as depicted in

the following equation:

𝑓𝑖𝑗 = 𝐺
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
2 , ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (1)

where the indexes 𝑖, 𝑗 refer to two bodies, having the mases 𝑚𝑖 and 𝑚𝑗, 𝑟𝑖𝑗 the module of

the vector that has the origin at the body 𝑖 and the extremity at the body 𝑗, 𝑓𝑖𝑗 the module of

the force vector (the magnitude of the force), while 𝐺 is the gravitational constant

6.67408(31)×10−11𝑚3 ⋅ 𝑘𝑔−1 ⋅ 𝑠−2. This equation can be written in the vector form, that

highlights the directions of the 𝒇𝒊𝒋 and 𝒓𝒊𝒋 = 𝒙𝒋 − 𝒙𝒊 vectors, using the unit vector
𝒓𝒊𝒋

𝑟𝑖𝑗
 :

𝒇𝒊𝒋 = 𝐺
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
2

𝒓𝒊𝒋

𝑟𝑖𝑗
, ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (2)

Taking into account all the possible pairs between the body 𝑖 (1 ≤ 𝑖 ≤ 𝑁) and all the

others N-1 bodies, one obtains the total force 𝑭𝒊 as the sum of all the interactions,

represented by the 𝒇𝒊𝒋 functions (except the case when 𝑖 = 𝑗, because in this case the

denominator of the equation (2) becomes zero):

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

295

𝑭𝒊 = ∑ 𝒇𝒊𝒋1≤𝑗≤𝑁
𝑖≠𝑗

= 𝐺𝑚𝑖 ∑
𝑚𝑗𝒓𝒊𝒋

𝑟𝑖𝑗
31≤𝑗≤𝑁

𝑖≠𝑗

 (3)

Under the effect of the interactions, the bodies tend to move from their initial positions,

approaching each other. As the 𝑟𝑖𝑗 distances decrease, the 𝑭𝒊 forces grow without any

limit. This growing could become an impediment when applying numerical methods for

integration [6]. Generally, when using the N-body simulations in astrophysics, the

collisions between the N considered bodies are not possible. Even if the 𝑟𝑖𝑗 distances

decrease and tend to zero, the bodies (that represent galaxies), do not collide but pass near

or through each other. In order to avoid the unlimited growing of the 𝑭𝒊 forces, one adds a

softening positive factor, denoted by 𝜖2, at the denominator of the equation (3):

𝑭𝒊 ≈ 𝐺𝑚𝑖 ∑
𝑚𝑗𝒓𝒊𝒋

(𝑟𝑖𝑗
2+𝜖2)3/21≤𝑗≤𝑁 (4)

When adding this factor, the condition 𝑖 ≠ 𝑗 is no longer necessary, because when 𝑖 = 𝑗,

the vector 𝒓𝒊𝒊 = 0 and therefore, the force 𝒇𝒊𝒊 = 𝐺
𝑚𝑖𝑚𝑖𝒓𝒊𝒊

(𝑟𝑖𝑖
2+𝜖2)3/2

 becomes zero, while the

denominator of 𝒇𝒊𝒊 is not zero. Using the softening factor, the magnitude of the

interactions between the bodies are limited and thus, the numerical integration is

facilitated.

Using the equation (4), one can express the acceleration of the 𝑖-body as:

𝒂𝒊 =
𝑭𝒊

𝑚𝒊
≈ 𝐺 ∑

𝑚𝑗𝒓𝒊𝒋

(𝑟𝑖𝑗
2+𝜖2)3/21≤𝑗≤𝑁 (5)

Taking into account the nature of the problem that is modeled using the

N-body simulation (𝑁 ≥ 2), one can choose different integration methods [7]. In our case,

in order to obtain the current positions and velocities of each body, we have used the

Verlet-Leapfrog Algorithm, a computationally efficient algorithm applicable to our

problem. This algorithm is frequently used in molecular dynamics simulations, in N-body

simulations problems, in computer graphics.

The Verlet-Leapfrog Algorithm consists in a numerical method, useful for integrating the

Newton's equations of motion. Even if this method was previously used in 1792 by the

French mathematician and astronomer Jean Baptiste Joseph Delambre, it is consecrated as

the Verlet's algorithm, who has used it in molecular dynamics in 1967. This approach was

also applied in 1909 by Cowell and Crommelin, in order to compute the orbit of Halley's

Comet and in 1907 by Carl Störmer, in his study regarding the electrical particles'

trajectories in a magnetic field.

The Verlet integration method has some important advantages, arising from its properties

[8]. Thus, it provides a good numerical stability and time reversibility. Considering the

unpredictable nature of individual atoms or molecules motion, an important problem that

arises when modeling problems related to this motion is to use accurate and stable

integration schemes for the obtained ordinary differential equations. Moreover, the

number of equations can be very large, as they are 6 for each particle (3 for the

components of the position vector and 3 for the components of the velocity).

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

296

If considering 𝑁 particles, the total number of equations is 6𝑁, while the number of

interaction terms is
𝑁(𝑁−1)

2
 in the case of pair-wise interactions. As a consequence, one

must use an algorithm that reduces to the minimum the necessary number of evaluations

that must be made on the right side of the obtained ordinary differential equations.

The Verlet integration schemes satisfy all of the above-mentioned requirements and

comprise three main different algorithms: Basic, Leapfrog and Velocity. After analyzing

and testing them, we have chosen for solving our problem the Verlet Leapfrog Algorithm

as it has offered the best results, features and implementation opportunities. In the

following, we will describe this algorithm.

The Verlet Leapfrog Algorithm can be obtained using a Taylor expansion of the position

𝑟(𝑡) in 𝑡, to order Δ𝑡2, where Δ𝑡 is the time step:

𝑟(𝑡 + Δ𝑡) = 𝑟(𝑡) + 𝑟′(𝑡)Δ𝑡 +
1

2
𝑟′′(𝑡)Δ𝑡2 + 𝒪(Δ𝑡3) (6)

𝑟(𝑡 − Δ𝑡) = 𝑟(𝑡) − 𝑟′(𝑡)Δ𝑡 +
1

2
𝑟′′(𝑡)Δ𝑡2 − 𝒪(Δ𝑡3) (7)

By adding and subtracting the equations (6) and (7), one obtains:

𝑟(𝑡 + Δ𝑡) + 𝑟(𝑡 − Δ𝑡) = 2𝑟(𝑡) + 𝑟′′(𝑡)Δ𝑡2 + 𝒪(Δ𝑡3) (8)

𝑟(𝑡 + Δ𝑡) − 𝑟(𝑡 − Δ𝑡) = 2𝑟′(𝑡)Δ𝑡 + 𝒪(Δ𝑡3) (9)

In the following, we define:

𝜕𝑟(𝑡) = 𝑟(𝑡 + Δ𝑡) − 𝑟(𝑡) (10)

Taking into account the equation (6), the equation (10) can be written:

𝜕𝑟(𝑡) = 𝑟′(𝑡)Δ𝑡 +
1

2
𝑟′′(𝑡)Δ𝑡2 + 𝒪(Δ𝑡3) (11)

The equation (10) implies that:

∂r(t − Δt) = r(t) − r(t − Δt) (12)

Taking into account the equation (7), the equation (12) can be written as:

∂r(t − Δt) = r′(t)Δt −
1

2
r′′(t)Δt2 + 𝒪(Δt3) (13)

By subtracting the equations (11) and (13), one obtains:

𝜕𝑟(𝑡) − 𝜕𝑟(𝑡 − Δ𝑡) = 𝑟′′(𝑡)Δ𝑡2 + 𝒪(Δ𝑡3) (14)

Equation (14) can be written as:

 𝜕𝑟(𝑡) = 𝜕𝑟(𝑡 − Δ𝑡) + 𝑟′′(𝑡)Δ𝑡2 + 𝒪(Δ𝑡3) (15)

Afterwards, by adding the equations (11) and (13), one obtains:

𝜕𝑟(𝑡) + 𝜕𝑟(𝑡 − Δ𝑡) = 2 𝑟′(𝑡)Δ𝑡 + 𝒪(Δ𝑡3) (16)

From the equation (16) one obtains:

𝑟′(𝑡) =
𝜕𝑟(𝑡)+𝜕𝑟(𝑡−Δ𝑡)

2 Δ𝑡
+ 𝒪(Δ𝑡2) (17)

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

297

Taking into account the equation (10), the equation (17) can be written as:

 𝑟′(𝑡) =
𝜕𝑟(𝑡−Δ𝑡)+𝑟′′(𝑡)Δ𝑡2+𝜕𝑟(𝑡−Δ𝑡)+𝒪(Δ𝑡3)

2 Δ𝑡
+ 𝒪(Δ𝑡2) (18)

or, after calculations,

𝑟′(𝑡) =
𝜕𝑟(𝑡−Δ𝑡)

Δ𝑡
+

1

2
 𝑟′′(𝑡)Δ𝑡 + 𝒪(Δ𝑡2) (19)

In the following, the Verlet Leapfrog Algorithm uses the half time step in order to obtain

accurate velocities. Thus, one defines:

𝑣
𝑛+

1

2

= 𝑣 (𝑡 +
1

2
Δ𝑡) (20)

where 𝑣(𝑡) = 𝑟′(𝑡) is the velocity. Using a Taylor expansion of the right member of the

equation (20), one obtains:

𝑣
𝑛+

1

2

= 𝑣(𝑡) +
1

2
𝑣′(𝑡)Δ𝑡 + 𝒪(Δ𝑡2) (21)

Similarly, considering:

𝑣
𝑛−

1

2

= 𝑣 (𝑡 −
1

2
Δ𝑡) (22)

and using a Taylor expansion of the right member of the equation (22), one obtains:

𝑣
𝑛−

1

2

= 𝑣(𝑡) −
1

2
𝑣′(𝑡)Δ𝑡 + 𝒪(Δ𝑡2) (23)

By dividing equation (11) with Δ𝑡 one obtains:

𝜕𝑟(𝑡)

Δ𝑡
= 𝑟′(𝑡) +

1

2
𝑟′′(𝑡)Δ𝑡 + 𝒪(Δ𝑡2) (24)

Taking into account the definition of 𝑣(𝑡) = 𝑟′(𝑡) and comparing the equations (21) and

(24) one can conclude that:

𝑣
𝑛+

1

2

= 𝑣 (𝑡 +
1

2
Δ𝑡) =

𝜕𝑟(𝑡)

Δ𝑡
 (25)

By dividing equation (13) with Δ𝑡 one obtains:

𝜕𝑟(𝑡−Δ𝑡)

Δ𝑡
= 𝑟′(𝑡) −

1

2
𝑟′′(𝑡)Δ𝑡 + 𝒪(Δ𝑡2) (26)

Considering the definition of 𝑣(𝑡) = 𝑟′(𝑡) and comparing the equations (23) and (26) one

can conclude that:

𝑣
𝑛−

1

2

= 𝑣 (𝑡 −
1

2
Δ𝑡) =

𝜕𝑟(𝑡−Δ𝑡)

Δ𝑡
 (27)

In conclusion, the velocities at time t can be computed by adding equations (21) and (23):

 𝑣𝑛 =
𝑣

𝑛+
1
2

+𝑣
𝑛−

1
2

2
 +𝒪(Δ𝑡2) (28)

Subtracting the equations (21) and (23), one obtains:

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

298

𝑣
𝑛+

1

2

− 𝑣
𝑛−

1

2

= 𝑣′(𝑡)Δ𝑡 + 𝒪(Δ𝑡2) (29)

Using equation (25) one obtains:

𝜕𝑟(𝑡) = 𝑟(𝑡 + Δ𝑡) − 𝑟(𝑡) = 𝑣
𝑛+

1

2

 Δ𝑡 (30)

Using the notations 𝑟𝑛 = 𝑟(𝑡), 𝑟𝑛+1 = 𝑟(𝑡 + Δ𝑡), the equation (30) can be written as:

𝑟𝑛+1 = 𝑟𝑛 + 𝑣
𝑛+

1

2

 Δ𝑡 (31)

The equations (28) and (29) give the velocities, while the equation (31) gives the positions

of the particles. In conclusion, in the leapfrog method the position is calculated at time

intervals that have the dimension of an integer multiple of the time step, 𝑡, 𝑡 + Δ𝑡, 𝑡 +

2Δ𝑡, …, while the velocity is evaluated at the times 𝑡, 𝑡 +
1

2
Δ𝑡, 𝑡 +

3

2
Δ𝑡, …, between these

points, starting from an initial point 𝑡. The above-mentioned leapfrog algorithm, requires

less storage and is less expensive than other approaches when judging it from the

computational requirements point of view [8]. In the case of large scale computations,

these aspects represent important advantages for the programmer. The Verlet Leapfrog

Algorithm has also the advantage that, even at large time steps, the conservation of energy

is respected. Therefore, when this algorithm is used, one can considerably decrease the

computation time.

In the following, we depict our implementation of the N-body simulation (𝑁 ≥ 2) on the

Pascal Compute Unified Device Architecture.

3. IMPORTANT ASPECTS REGARDING THE DEVELOPMENT OF THE N-

BODY SIMULATION IN THE PASCAL COMPUTE UNIFIED ARCHITECTURE

The most important aspects that we had to take into account when developing the N-body

simulation in the CUDA architecture comprised the proper management of the

synchronization process, of the atomic operations, of the race situations, as to circumvent

memory leakage and achieve a sufficient amount of dynamic parallelism. When one

develops N-body simulations (𝑁 ≥ 2) that are targeted by the central processing unit

(CPU) and for which a single processing thread is sufficient, the whole process of

managing race conditions is extensively simplified. In these situations, the developer must

examine carefully the data flow as to identify if a specific value has been loaded from a

certain variable before storing the latest updated value in it.

The vast majority of the compilers that are being used these days for compiling software

applications that make use of a single processing thread have the technical capability to

pinpoint precisely these issues. When developers are programming applications that use

multiple processing execution threads, race conditions have to be methodically and

accurately averted. The threading mechanism implemented in CUDA is configured as to

achieve a high degree of performance without taking into consideration a chronological

order in which the kernels have been invoked and the threads executed.

Like in the case of the N-body simulation, when the state of an element at a certain step is

influenced by the computed result from a previous step, if the developer allocates a

processing thread for each body, for the result to be correct the threads would have to be

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

299

processed in an ascending order and the results of the previous execution steps to have

already been calculated and stored in the corresponding variables. When more execution

threads are processed in parallel, the risks become higher for the outcome to have errors,

in some situations the whole application might even crash.

What makes it more complicated is the fact that in some random situations the program

might produce a correct output if a processing thread has the possibility to compute and

store the result before another thread needs to retrieve it. All of these specific aspects

provide a valuable insight on the issue of a race condition, when certain functions of an

application are processing data simultaneously to a particular point in the execution path.

Therefore, we had to develop the N-body CUDA implementation by employing a

synchronization process as the order of execution in the device can vary to a great extent.

By using the synchronization process, we were able to transfer data between the threads

belonging to the same block and between multiple blocks that were part of the same grid

of thread blocks. We have used the local memory area and register memory available to

each of the threads. The shared memory that exists at the level of a block of threads

helped us to interchange data between the threads that resided in the same block.

When developing the N-body simulation (𝑁 ≥ 2), we have used the “cuda-memcheck”

software instrument with the aim of identifying, isolating and solving the issues

concerning the memory leaks and over-usage of memory. In developing the N-body

implementation, we have taken into consideration the fact that the Pascal CUDA

architecture offers support for the dynamic parallelism feature and thus, we were able to

call, from an initial CUDA kernel, supplementary child CUDA kernels and synchronize

the processing. This technique helped us avoid having to invoke more kernel functions or

to keep always several threads idle for being used in the final steps of the computation. By

using the dynamic parallelism technique, we were able to save a huge amount of

computational resources and avoid inefficient results when computing a large number of

bodies.

Of particular usefulness when implementing the simulation using the dynamic parallelism

solution was the fact that we were able to configure and execute grids of blocks,

containing more processing threads and in the same time to postpone further processing,

until all the grids of the blocks have finalized the processing up to the precision of a

processing thread residing within a block of the grid. Therefore, we were able to program

a thread from within a grid of blocks, so that in certain situations to have the possibility of

invoking a new grid of thread blocks (a child grid of thread blocks) that belongs to the

initial parent grid of thread blocks. An advantage of the dynamic parallelism solution that

we have implemented in our approach consists in the nesting mechanism that is

implemented in the architecture and automatically checks that a parent grid completes the

processing only after the child grids have completed their tasks. Therefore, we made use

of the implicit synchronization mechanism that is enforced by the CUDA runtime on the

parent and child kernel functions.

Through the dynamic parallelism solution that we have implemented, we made sure that

the graphics processing units' resources were efficiently spent and that an appropriate

occupancy of the available resources was achieved, as the child kernel functions that were

called by the parent ones were processing the tasks in parallel with minimum control

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

300

divergence or even none whatsoever. When the number of bodies is small, we have

programmed the solution to process using only the parent kernel and not to invoke a

supplementary child kernel as there is not sufficient parallelism in this case to warrant the

invoking of other functions.

When implementing the N-body simulation (𝑁 ≥ 2) in the Pascal CUDA architecture,

after having divided the tasks, we have allocated them to more blocks of processing

threads. We have tested extensively different methods for allocating the sizes of the grids

and of the processing blocks and we have reached peak performance using the following

approach:

NATB = {
[

N

512
] + 1, if N does not divide with 512

N

512
 , if N divides with 512

 (32)

and

NTPB = {
N, if NATB = 1

512 , if NATB ≥ 2
 (33)

where 𝑁𝐴𝑇𝐵 represents the number of allocated thread blocks, 𝑁 is the number of bodies,

𝑁𝑇𝑃𝐵 represents the number of threads per block and [
𝑁

512
] is the integral part of the real

number
𝑁

512
 .

In the following section, we present the experimental results that we have conducted and

an analysis of the obtained performance.

4. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS OF THE N-

BODY SIMULATION IMPLEMENTATION ON THE PASCAL ARCHITECTURE

We have developed and run an experimental test suite in order to check the performance

of the developed implementation of the N-body simulation and we have compared the

results obtained when benchmarking our developed implementation on the Pascal

architecture with those provided by a state of art sequential classical implementation of

the N-body simulation on the central processing unit.

In order to analyse the level of performance, we have developed and conducted a

benchmark suite, using as a hardware configuration the central processing unit Intel i7-

5960x operating at 3.0 GHz with 32GB (4x8GB) of 2144 MHz, DDR4 quad channel and

the GeForce GTX 1080 NVIDIA graphics card with 8GB GDDR5X 256-bit from the

Pascal architecture. The software configuration that we have used is Windows 10

Educational operating system and the CUDA Toolkit 8.0 with the NVIDIA developer

driver.

In our experimental tests, we have successively benchmarked different cases regarding the

number N of interacting bodies, ranging from 16 to 8,192 and different number of

execution steps, denoted by 𝑛 (5,10,15). In order to ensure the accuracy of the results, we

have run 100 iterations for each of the benchmark tests and afterwards we have computed

the average of these results. Thus, for each of the analyzed cases, we have computed the

average total execution time (measured in milliseconds) for the CPU implementation

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

301

(CPUT), for the GPU implementation (GPUT) and then we have also computed a relevant

metric, the CPUT/GPUT ratio for the corresponding number of execution steps. The

measured total execution times comprise the necessary time for computing, for each step,

the new positions, velocities and accelerations of the N interacting bodies.

The N-body problem represents an initial value problem, comprising the system of

differential equations (mentioned in section 2) and initial conditions. As our

implementation is based on parallel computations, in order to obtain, in each of the

analyzed situations, a comparable amount of computations, we have decided to use a

specific generator for the initial conditions (3 components of the position vector, 3

components of the velocity vector, the value of the mass for each body and the softening

positive factor 𝜖2). Thus, in order to randomly generate the initial conditions, we have

used the newest version of NEMO (A Stellar Dynamics Toolbox, Version 3.3.2, released

in March 14, 2014) [9].

As the results obtained using different settings for the number of execution steps (𝑛 =
5, 𝑛 = 10, 𝑛 = 15) have provided similar performance results, in the following we present

and analyze the case when 𝑛 = 15. We have synthetized these results, highlighting for

each of the considered values of N, the number of interactions,
𝑁(𝑁−1)

2
, the total execution

times registered when running the N-body simulation on the CPU (CPUT), on the GPU

(GPUT) (both measured in milliseconds) and also the dimensionless CPUT/GPUT ratio

(Table 1).

Table 1. Experimental results for 𝑛 = 15 execution steps

No
Number 𝑵

of bodies

Number 𝒏 of

interactions
CPUT (ms) GPUT (ms) CPUT/GPUT

1 16 120 0.29 3.731 0.07773

2 32 496 1.128 7.114 0.15857

3 64 2,016 4.472 13.666 0.32725

4 128 8,128 17.826 26.414 0.67488

5 256 32,640 70.907 52.905 1.34028

6 512 130,816 270.602 103.978 2.60249

7 1,024 523,776 874.443 208.918 4.18558

8 2,048 2,096,128 3433.961 422.939 8.11928

9 4,096 8,386,560 14013.55 847.882 16.5277

10 8,192 33,550,336 54338.387 1693.389 32.0885

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

302

In order to facilitate the comparison of the obtained experimental results, we have also

represented them in Figure 1 and Figure 2. Thus, in Figure 1 we have represented the

total execution times, while in Figure 2 we have represented the CPUT/GPUT ratio, for

𝑛 = 15 execution steps.

Figure 1. The total execution times for 𝑛 = 15 execution steps

Figure 2. The CPUT/GPUT ratio for 𝑛 = 15 execution steps

Analysing the experimental results presented in the above table and figures along with the

results obtained for the other values of 𝑛, we have concluded that when the number 𝑁 of

bodies is less than 256, the best results (the lowest execution time) have been recorded on

the CPU because in this case, the required computational load does not fully employ the

parallel processing power of the GPU.

In all of the analysed situations, when the number 𝑁 of interacting bodies is higher than

256, the GPU performance surpasses the CPU's one. As Figure 2 highlights, the

CPUT/GPUT ratio is sub-unitary for 𝑁 < 256 and supra-unitary for 𝑁 ≥ 256. As the

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

303

number N of bodies increases, this ratio also increases, and its greatest value is reached in

the case of 𝑁 = 8,192 when the average total execution time registered by the GPU is

more than 32 times lower (32.0885) than the average total execution time registered by

the CPU. We have registered similar results when choosing 𝑛 = 5 and 𝑛 = 10 execution

steps. Thus, for 𝑛 = 5 the highest value of the dimensionless CPUT/GPUT ratio was

32.1972, while for 𝑛 = 10 the highest value of this ratio was 32.3525, both of these

values being registered for 𝑁 = 8,192.

The experimental results that we have obtained outline that our solutions for

implementing the N-body simulation on the latest Pascal architecture attain a high level of

performance highlighted by the reduced execution times, when compared to the state of

art sequential classical approach. Thus, our implementation has the ability of becoming a

useful, powerful tool in a wide range of scientific domains that employ fast, accurate N-

body simulations.

5. CONCLUSIONS

In our research, we have developed and proposed novel solutions for implementing the N-

body simulation, harnessing the enormous parallel processing power of the latest Pascal

Compute Unified Device Architecture, in order to achieve a high level of performance

and efficiency. An important aspect of our research consists in employing the latest

technical characteristics of the CUDA Toolkit 8.0, leveraging the architecture’s dynamic

parallelism feature for balancing the computational tasks.

The obtained results reflect the efficiency of the developed solutions and their suitability

for implementing the CUDA Pascal N-body simulation, based on the Verlet Leapfrog

Algorithm, in various scientific fields, highlighting the undisputable advantages of our

solution, compared to the classical sequential approaches, when having to process a large

number of interacting bodies. We have conducted extensive experimental tests, choosing

various settings regarding the number N of bodies, the number n of execution steps,

computing in each of the cases the average of 100 iterations, in order to obtain relevant,

accurate, reliable results and a detailed analysis of our implementation. The experimental

suite highlights the reliability, efficiency and applicability of our developed solution

regarding the implementation of the N-body simulation in the Pascal architecture.

In the scientific literature one can find more implementations of the N-body simulation,

but when having to process a large number of bodies, most of them are limited by the

huge computational requirements. Our developed approach has the advantage and brings

the novelty of harnessing the dynamic parallelism feature and the huge computational

potential of the Pascal Compute Unified Device Architecture, offering in a reduced

execution time the accurate states of the N interacting bodies: positions, velocities and

accelerations. The proposed implementation of the N-body simulation, based on the

Verlet Leapfrog Algorithm, proves to be a useful tool in numerous scientific fields,

considering the high computational throughput, the obtained level of performance and

efficiency.

JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT

304

REFERENCES

[1] L. Nyland, M. Harris, J. Prins, "Fast N-Body Simulation with CUDA", in GPU

Gems 3, chapter 31, Addison Wesley, Boston, 2007.

[2] E. Elsen, M. Houston, V. Vishal, E. Darve, P. Hanrahan, V. Pande, "N-Body

simulation on GPUs", in Proceedings of the 2006 ACM/IEEE conference on

Supercomputing (SC '06), ACM, New York, 2006.

[3] J. Jeffers, J. Reinders, A. Sodani, "N-Body simulation", in Intel Xeon Phi Processor

High Performance Programming, Morgan Kaufmann, Boston, 2016.

[4] J.A. Franco R., The N-Body Problem: Classic and Relativistic Solution:

Corrections to: Newton's Gravitational Force for N>2, and Einstein's relativistic

Mass & Energy, under a 3-D Vectorial Relativity approach, CreateSpace

Independent Publishing Platform, North Charleston, 2016.

[5] T.Levi-Civita, The n-Body Problem in General Relativity, D. Reidel Pub. Co.,

Dordrecht, 1964.

[6] T. Burgess, The n-Body Problem, ChiZine Publications, Toronto 2013.

[7] K. Meyer, G. Hall, D. Offin, Introduction to Hamiltonian Dynamical Systems and

the N-Body Problem (Applied Mathematical Sciences), Springer, New York, 2009.

[8] S. J. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms (Cambridge

Monographs on Mathematical Physics), Cambridge University Press, 2009.

[9] P.J. Teuben, "The Stellar Dynamics Toolbox NEMO", in: Astronomical Data

Analysis Software and Systems IV, PASP Conf. Series, vol. 77, 1995.

